A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures

(1) Matroids

Definition. A matroid is a pair (M, rk), where

- M finite set (ground set)
- rk: $2^M \to \mathbb{Z}_{>0}$ rank function satisfies axioms:
- $ightharpoonup 0 \le \operatorname{rk}(A) \le |A|$
- $A \subseteq B \Rightarrow \operatorname{rk}(A) \leq \operatorname{rk}(B)$
- ► $\operatorname{rk}(A \cup B) + \operatorname{rk}(A \cap B) \leq \operatorname{rk}(A) + \operatorname{rk}(B)$
- ► Tutte polynomial:

$$\mathfrak{T}_M(x,y) := \sum_{A \subseteq M} (x-1)^{\operatorname{rk}(M)-\operatorname{rk}(A)} (y-1)^{|A|-\operatorname{rk}(A)}$$

Representable matroids: A $(d \times N)$ -matrix with entries in some field \mathbb{K} defines a matroid in a canonical way:

- ground set: columns of the matrix
- rank function: rank function from linear algebra

Theorem (Zaslavsky, 1975). A hyperplane arrangement in \mathbb{R}^d with corresponding matroid (M, rk) divides \mathbb{R}^d into $\mathfrak{T}_M(2, 0)$ regions.

- ightharpoonup (M, rk) matroid and $A \subseteq M$
- restriction to A: $(M, \operatorname{rk})|_A := (A, \operatorname{rk}|_A)$
- ► contraction of A: $(M, \operatorname{rk})/A := (M \setminus A, \operatorname{rk}_{/A})$ where $\operatorname{rk}_{/A} : 2^{M \setminus A} \to \mathbb{Z}_{\geq 0}$, $\operatorname{rk}_{/A}(S) := \operatorname{rk}(A \cup S) - \operatorname{rk}(A)$

Theorem (KRS&ELV [2, 4], Matroid Convolution formula). (M, rk) matroid. Then

$$\mathfrak{T}_M(x,y) = \sum_{A \subseteq M} \mathfrak{T}_{M|_A}(0,y) \mathfrak{T}_{M/A}(x,0).$$

(2) Arithmetic matroids

Definition (Bränden, D'Adderio, Moci).

- An arithmetic matroid (AM) is a triple (M, rk, m)
 - \blacktriangleright (M, rk) is a matroid
 - $m: 2^{M} \to \mathbb{Z}_{>1}$ is the *multiplicity function* that satisfies:
 - For $A, B \subseteq M$, m(A) divides m(B) iff ...
 - ho $\sum_{A} (-1)^{?} m(A) \geq 0$, where we sum over ...
- Arithmetic Tutte polynomial:

$$\mathfrak{M}_{M}(x,y) := \sum_{A \subseteq M} m(A)(x-1)^{\operatorname{rk}(M)-\operatorname{rk}(A)}(y-1)^{|A|-\operatorname{rk}(A)}$$

Representable AMs: A $(d \times N)$ -matrix with entries in \mathbb{Z} defines an arithmetic matroid in a canonical way:

- defines a matroid in the usual way
- ightharpoonup multiplicity of a basis B: m(B) = |det(B)|
- lacksquare in general: $m(S):=\left|\left\langle S\right
 angle_{\mathbb{R}}\cap\mathbb{Z}^d/\left\langle S\right
 angle_{\mathbb{Z}}\right|$

Theorem (Lawrence, 2011). A toric arrangement on the real torus $(S^1)^d$ with corresponding AM $(M, \operatorname{rk}, m)$ divides the torus into $\mathfrak{M}_M(1,0)$ regions.

Restriction and contraction for the multiplicity function:

- $ightharpoonup m|_A(S)=m(S) ext{ for } S\subseteq M$
- ▶ $m_{/A}(S) = m(A \cup S)$ for $S \subseteq M \setminus A$

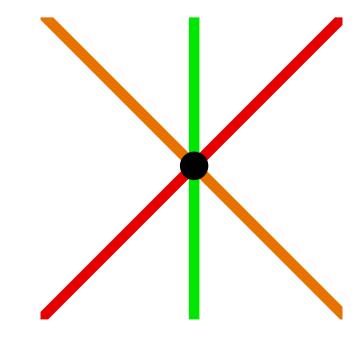
Theorem (ML-SB [1], Arithmetic convolution formula). (M, rk, m) arithmetic matroid. Then

$$\mathfrak{M}_{M}(x,y) = \sum_{A\subseteq M} \mathfrak{M}_{M|_{A}}(0,y)\mathfrak{T}_{M/A}(x,0)$$

$$= \sum_{A\subseteq M} \mathfrak{T}_{M|_{A}}(0,y)\mathfrak{M}_{M/A}(x,0).$$

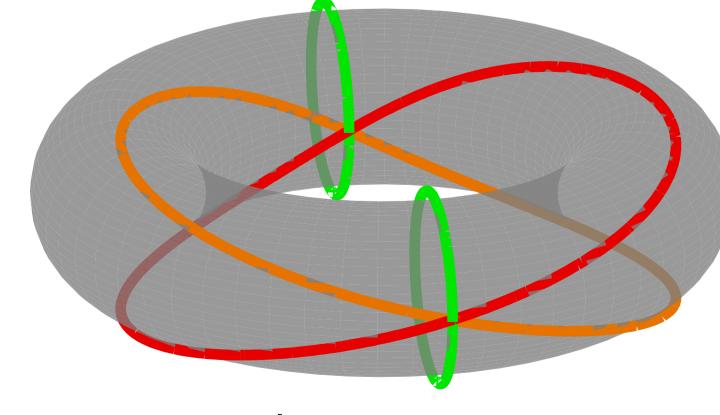
Hyperplane arrangements and toric arrangements

$$X = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$



UNI FR

hyperplane arrangement related to volumes of polytopes $\mathfrak{T}_X(x,y)=x^2+x+y$



toric arrangement

related to no. of integer points in polytopes
$$\mathfrak{M}_X(x,y) = x^2 + 2x + 2y + 1$$

(3) Further generalizations

The convolution formula holds in a more general setting:

- relax the arithmetic matroid axioms
- use two different multiplicity functions

A ranked set with multiplicities is a finite set M together with

- ▶ a rank function rk : $2^M \to \mathbb{Z}$ s. t. rk(\emptyset) = 0
- ▶ a multiplicity function $m: 2^M \to R$, where R is a commutative ring with 1.
- ▶ Deletion and contraction are defined in the usual way.

Theorem (ML–SB [1]). Let (M, rk, m_1) and (M, rk, m_2) be two ranked sets with multiplicity. Then $(M, rk, m_1 \cdot m_2)$ is a ranked set with multiplicity and

$$\mathfrak{M}_{(M,\mathsf{rk},m_1m_2)}(x,y) = \sum_{A\subseteq M} \mathfrak{M}_{(M,\mathsf{rk},m_1)|_A}(0,y) \mathfrak{M}_{(M,\mathsf{rk},m_2)/A}(x,0).$$

This setting contains the following combinatorial structures:

- Matroids
- ► (Pseudo-/quasi-) arithmetic matroids
- Integral polymatroids: if rk is the submodular function that defines an integral polymatroid, $R=\mathbb{Z}$ and $m\equiv 1$
- ► Rank functions of delta-matroids and ribbon graphs: $m \equiv 1$ and $rk = \rho$, the rank function of an even delta-matroid Ribbon graphs \leftrightarrow delta-matroids like graphs \leftrightarrow matroids

4 Applications

New proofs of two known positivity results:

- ► The coefficients of the arithm. Tutte polynomial are positive
- ► The product of the multiplicity functions of two AMs is again a multiplicity function of an AM.

In special cases, we can recover known results:

Let $X=(x_1,\ldots,x_N)\subseteq \mathbb{Z}^d$. For (x,y)=(2,1), our theorem is equivalent to a well-known identity for the zonotope $Z(X):=\{\sum_{i=1}^N \lambda_i x_i: 0\leq \lambda_i\leq 1\}$:

$$\left|Z(X)\cap\mathbb{Z}^d
ight|=\mathfrak{M}(2,1)=\sum_{A\subset X}\mathfrak{M}_{M|_A}(0,1)\mathfrak{T}_{M/A}(2,0)$$

$$=\sum_{X\supseteq A ext{ flat}} \mathfrak{M}_{M|_A}(0,1)\mathfrak{T}_{M/A}(2,0)=\sum_F \left| \operatorname{relint}(F)\cap \mathbb{Z}^d
ight|,$$

where the last sum is over all faces of Z(X).

▶ setting x=1 in convolution formula \leftrightarrow decomposition $\mathsf{DM}(X) = \bigoplus_{p \in \mathcal{V}(X)} e_p \mathcal{D}(X_p)$ of Dahmen–Micchelli spaces appearing in the theory of vector partition functions

5 Flows and colourings

- $lacksquare X = (x_1, \dots, x_N) \subseteq \mathbb{Z}^d$
- ▶ $\phi \in \text{Hom}(\mathbb{Z}^d, \mathbb{Z}/q\mathbb{Z})$ proper arithmetic q-coloring if $\phi(x) \neq 0$ for all $x \in X$
- ► A nowhere zero q-flow on X is $\psi: X \to \mathbb{Z}/q\mathbb{Z} \setminus \{0\}$ s. t. $\sum_{x \in X} \psi(x)x = 0$ in $\mathbb{Z}^d/q\mathbb{Z}^d$
- $\blacktriangleright \chi_X(q) := \text{no. of colourings and } \chi_X^*(q) := \text{no. of flows}$
- \blacktriangleright χ_X and χ_X^* are quasi-polynomials
- generalizes flows and colourings of graphs

This yields a combinatorial interpretation of the arithmetic Tutte polynomial at infinitely many points:

$$\mathfrak{M}_X(1-p,1-q) = p^{\mathsf{rk}(G)-\mathsf{rk}(X)}(-1)^{\mathsf{rk}(X)} \cdot \sum_{A\subset X} (-1)^{|A|} \chi_{X|_A}^*(q) \chi_{X/A}(p)$$

for infinitely many $p, q \in \mathbb{Z}$.

(7) Powers of arithmetic matroids and Plücker coordinates

Theorem (ML [3]). $\blacktriangleright k \neq 1$ non-negative integer A = (M, rk, m) representable arithmetic matroid

(M, rk) non-regular

Then $\mathcal{A}^k := (M, \operatorname{rk}, m^k)$ is not representable.

If (M, rk) is regular and m satisfies an extra condition, then \mathcal{A}^k is representable.

Theorem (ML [3]). $\blacktriangleright k \in \mathbb{R}_{\geq 0}, k \neq 1$

 $X \in \mathbb{R}^{d imes N}$ matrix of full rank $d \leq N$

Then X represents a regular matroid if and only if the following condition is satisfied:

there is $X_k \in \mathbb{R}^{d \times N}$ s.t. for each maximal minor $\Delta_I(X)$, $|\Delta_I(X)|^k = |\Delta_I(X_k)|$ holds, where $I \in \binom{[N]}{d}$.

If k is an integer, this holds over any ordered field \mathbb{K} .

References

- SB and ML. A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures, 2016. arXiv:1602.02664.
- Gwihen Etienne and Michel Las Vergnas. External and internal elements of a matroid basis.

 Discrete Math., 1998.
- [3] ML. On powers of Plücker coordinates and representability of arithmetic matroids, 2017. arXiv:1703.10520.
- [4] Woong Kook, Vic Reiner, and Dennis Stanton. A convolution formula for the Tutte polynomial. *JCTB*, 1999.